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Abstract
A method for geometric phase estimation from the scalar vector product of the
initial- and final-state vectors of a system is proposed. The method is based
on the time–frequency distribution, namely, the short-time Fourier transform
(STFT) of a complex signal. By adjusting the width of the analysis window of
the STFT, an estimated geometric phase can be obtained which closely matches
a true geometric phase. The computational algorithm for geometric phase
decomposition based on the Gabor expansion is presented. Numerical results
are verified by several examples of geometric phase decompositions for SU(2)
evolutions.

PACS number: 03.65.Vf

1. Introduction

During the past decade, geometric phase theory has been extended from the original findings
in quantum mechanics [1] to many areas of science including optics, solid state physics,
chemistry and many others [2]. Having topological properties in common, geometric phases
differ in the description techniques in all these cases. The most widely studied are the
properties of geometric phase for SU(2) polarization transformations [3]. Based on the
analogy with polarized light waves, geometric phase decomposition has been proposed for
scalar wave superpositions [4]. However, the method has limitations, because wave expansion
into quasi-harmonic components must be performed prior to geometric phase decomposition,
which restricts potential applications of the method. The components of the superposition
are not exactly harmonic time series and cannot be determined from the resulting waveform
unambiguously. The same difficulties arise in experimental observation of the geometric phase.
In principle, all experiments reported to date have been based on some a priori information
about a system’s evolution. As a common case, system parameters are controlled in such a
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way that the dynamical phase is suppressed during cyclic evolution, and with the geometric
phase left alone the total phase is measured. In other words, the geometric phase is not a
directly observable quantity, but is deducible from the total phase. Moreover, there is no
universal framework to obtain the geometric phase from the measured total phase without any
knowledge of the theoretical model of the system.

Experimentally, the total phase of a system undergoing time evolution is measured as in-
phase and quadrature components of some complex-valued signal, associated with the scalar
vector product 〈A|B〉 of the initial- |A〉 and final- |B〉 state vectors. This is according to the
Pancharatnam connection—the phase definition between two nonorthogonal vectors in Hilbert
space [5,6]. Determination of the geometric phase from the resulting signal represents itself as a
task of geometric phase decomposition of a complex signal. In this paper, we give a method for
geometric phase decomposition for any complex signal with an arbitrary waveform, without
the need for detailed information about the system’s evolution. The method is restricted
to systems governed by the dipole Hamiltonians, for which the evolution operator can be
factorized by a combination of unitary operators, representing different types of dynamics.
However, such systems constitute a large class of geometric phase manifestations, such as
SU(2)-induced geometric phases of polarized waves [3] or spin- 1

2 particles in a magnetic
field [7, 8]. For the case of harmonic time series, the method generalizes the geometric phase
decomposition for scalar wave superpositions [4]. The framework involves the time–frequency
representation of complex signals, which represents the energy distribution simultaneously
in the time and frequency domains. It allows us to differentiate between various kinds of
dynamics and separate dynamical and geometric phases of the resulting waveform. The
procedure is analogous to the geometric phase decomposition of the quantum state function
in the noninteraction picture [9]. The only ambiguity that remains in such a decomposition
is to choose which part of the evolution of the nonstationary system is due to free evolution
and which to interaction. For a signal, an equivalent task is to determine the characteristic
frequency, separating the frequency spectrum of free motion and interaction. We also present
a computational algorithm for geometric phase decomposition, based on the Gabor expansion,
which can be realized with the help of the fast Fourier transform. The numerical results of
the method are verified by several examples of geometric phase decompositions for SU(2)
evolutions.

2. Geometric phase decomposition in the noninteraction picture

First let us briefly review the concept of geometric phase decomposition in the noninteraction
picture [9], which later will serve as a starting point for geometric phase decomposition of
a complex signal. If a free system is governed by a time-independent Hamiltonian H0 and
the corresponding evolution operator U0(t) = exp

(− i
h̄
H0t

)
, then the geometric phase for the

initial |
0(0)〉 and final |
0(t)〉 states is expressed as

γ0(t) = arg 〈
0(0)| 
0(t)〉 +
1

h̄

∫ t

0
〈
0(t

′)|H0|
0(t
′)〉 dt ′ (1a)

= arg〈
0(0)|U0(t)|
0(0)〉 +
t

h̄
〈
0(0)|H0 |
0(0)〉 . (1b)

The difference between the total and geometric phases, the dynamical phase, is a linear function
of time in the case of a free system.

Consider now a system that is initially prepared in the eigenstate |
0(0)〉 = |m〉 of
H0 and where interaction is turned on in such a way that the evolution operator becomes
U(t) = U0(t)U1(t), where U1(t) is the evolution operator due to interaction. This is the case
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of nonadiabatic evolution governed by a dipole Hamiltonian (for more details see [9]). If the
noninteraction picture is introduced in the way

|
(0)(t)〉 = U+
1 (t)|
(t)〉 |
(0)(0)〉 = |
(0)〉 = |m〉 (2)

H(0)(t) = U+
1 (t)H(t)U1(t) (3)

with |
(t)〉 and H(t) being the state vector and the full Hamiltonian of the interacting system,
respectively, then the geometric phase in the noninteraction picture is expressed in the usual
form:

γ (0)
m (t) = arg〈
(0)(0)|
(0)(t)〉 +

1

h̄

∫ t

0
〈
(0)(t ′)|H(0)(t ′)|
(0)(t ′)〉 dt ′ (4a)

= arg〈m(t)|
(t)〉 +
1

h̄

∫ t

0
〈
(t ′)|H(t ′)|
(t ′)〉 dt ′ (4b)

where the reference basis {|m(t)〉} is time dependent and its time evolution is governed by the
interaction evolution operator U1(t):

|m(t)〉 = U1(t) |m〉 |m(0)〉 = |m〉 . (5)

If the interaction Hamiltonian H1(t) = ih̄U̇1(t)U
+
1 (t) has no diagonal matrix elements in the

eigenbasis {|m〉} of the free Hamiltonian, the geometric phase expression (4b) reduces to

γ (0)
m (t) = arg〈m(t)|U0(t)|m(t)〉 +

1

h̄

∫ t

0
〈m(t ′)|H0|m(t ′)〉 dt ′ (6)

which is similar to (1a), except that in the noninteraction picture the instantaneous eigenbasis
{|m(t)〉} is time dependent. This means that the geometric phase in the noninteraction picture
possesses all the characteristics of the free geometric phase. Interaction only modifies the
reference basis, which is equivalent to the change of initial state in (1a). Since in most cases
|H1(t)| 	 |H0|,U1(t) represents slower evolution compared toU0(t). Therefore the behaviour
of the geometric phase (6) may be regarded as if determined by free evolution U0(t) in the
slowly varying instantaneous eigenbasis {|m(t)〉}.

3. Geometric phase decomposition for complex signals

There are many cases in history when quantum mechanical concepts have been successfully
applied to signal analysis. These are the Wigner distribution, Cohen’s class and the uncertainty
principle in time–frequency analysis of complex signals [10, 11]. The main reason for this is
that operator theory is widely used in both quantum physics and signal theory. Operators for
time and frequency are established for continuous as well as for discrete time signals [10,12].

Now we shall apply the concept of geometric phase decomposition in the noninteraction
picture to complex signals. We shall require that the geometric phase defined for a complex
signal satisfies the following criteria:

(i) it possesses the same characteristic features, nonlinearity and phase jumps, as the
quantum geometric phase in the noninteraction picture;

(ii) it reduces to the geometric phase for scalar wave superpositions in the case of harmonic
wave superposition.

Consider a complex signal

s(t) = A(t)eiϕ(t) (7)

with A(t) and ϕ(t) being the amplitude and phase, respectively. Suppose that the energy of
the signal is normalized to unity:

E =
∫

|s(t)|2 dt =
∫

|A(t)|2 dt = 1. (8)
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(All integrals without limits in this paper imply integration from −∞ to +∞.) In order to
define the geometric phase in the noninteraction picture, we have to make an assumption about
which part of the evolution may be considered as free evolution and which as interaction. If we
consider a system which generates the signal to be free, the dynamical phase must be a linear
function of time and correspond to a constant average frequency, which is defined as [10]

〈ω〉 =
∫

s∗(t)
1

i

d

dt
s(t) dt =

∫
S∗(ω)ωS(ω) dω (9)

where S(ω) is the Fourier transform of a signal and ‘*’ denotes the complex conjugate.
When the signal’s energy is properly normalized, 1

i
d
dt and ω have the meaning of frequency

operators in the time and frequency domains, respectively, while s(t) and S(ω) play the role of
wavefunctions. The geometric phase is the difference between the total and dynamical phases:

γ0(t) = arg
(
s∗(0)s(t)

) −
∫ t

0
〈ω〉 dt ′ = arg

(
s∗(0)s(t)

) − t〈ω〉. (10)

This expression of geometric phase is analogous to the quantum geometric phase in the absence
of interaction (1b). When a system is interacting, the dynamical phase is no longer a linear
function of time, the time dependence of which is introduced through the time-dependent
instantaneous eigenbasis {|m(t)〉} (6). In a similar manner, to define the geometric phase for a
complex signal, the reciprocal of the wavefunction S(ω) in the frequency domain must depend
on time or, equivalently, s(t) must be frequency dependent. This means that signal has to be
characterized in both time and frequency simultaneously. Such a representation of a signal
is known as a time–frequency distribution P(t, ω)—the joint density of the signal’s energy
at time t and frequency ω. Ideally, the density P(t, ω) should satisfy the following marginal
conditions:

P(t) =
∫

P(t, ω) dω = |s(t)|2 (11)

P(ω) =
∫

P(t, ω) dt = |S(ω)|2 (12)
∫ ∫

P(t, ω) dω dt =
∫

|s(t)|2 dt =
∫

|S(ω)|2 dω = 1. (13)

Not all distributions satisfy the marginal conditions; therefore, in general, P(t) and P(ω)

should be used instead of |s(t)|2 and |S(ω)|2, respectively. Substituting for S∗(ω)S(ω) =
|S(ω)|2 the conditional time–frequency distribution P (ω| t) = P(t, ω)/P (t) of frequency
ω for a given time moment t , geometric phase expression (10) can be rewritten in a time-
dependent ‘eigenbasis’ P(t, ω):

γ (t) = arg
(
s∗(0)s(t)

) −
∫ t

0
〈ω〉t ′ dt ′ = arg

(
s∗(0)s(t)

) −
∫ t

0

1

P(t ′)

∫
ωP(t ′, ω) dω dt ′

(14)

where, instead of the average frequency 〈ω〉, the instantaneous frequency 〈ω〉t =∫
ωP (ω| t) dω is used. Integration over frequency ω in the dynamical phase part means

averaging with a particular degree of smoothness depending on the form of the P(t, ω)

distribution. By proper choice of P(t, ω), one may reach two ultimate cases of dynamical
phase dependence on time: the first is a linear function with a constant frequency and the
second dependence exactly follows the total phase. In terms of the noninteraction picture, this
means two distinctive cases of free and interacting systems, and all the intermediate states have
some part of the interaction transformed away by the noninteraction picture. One of the extreme
cases, the free evolution, corresponds to factorization of the time–frequency distribution

P(t, ω) = |s(t)|2 |S(ω)|2 (15)
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thus reducing the geometric phase expression (14) to (10). The second case, when the total
evolution operator of a system is considered to be due to interaction, U(t) = U1(t), can be
realized by the Wigner–Ville distribution [10, 11]:

P(t, ω) = 1

2π

∫
s∗ (t − τ/2) s (t + τ/2) e−iωτ dτ

= 1

2π

∫
S∗ (ω + �/2) S (ω −�/2) e−i�t d�. (16)

For such a distribution, the dynamical phase part approaches the total phase and the geometric
phase vanishes:

γ (t) = ϕ(t)−
∫ t

0
ϕ′(t ′) dt ′ = 0 (17)

because the mean instantaneous frequency of the Wigner–Ville distribution is equal to the
mean instantaneous frequency of the complex signal, 〈ω〉t = ϕ′(t) [10, 11]. To cover all
intermediate cases, one needs a distribution P(t, ω) which has a parameter to adjust the form
of the distribution in order to produce the mean frequency of the dynamical phase between a
constant ω0 = 〈ω〉 and total phase derivative ϕ′(t). A good candidate for such a distribution
may be the short-time Fourier transform (STFT) [10, 11]:

P(t, ω) = |STFT(t, ω)| (18)

STFT(t, ω) = 1√
2π

∫
s(τ )g∗(τ − t) e−iωτ dτ (19)

whereg(t) is a window function, called the analysis window. It balances the time and frequency
resolutions. If a function has a short time duration, its frequency bandwidth is wide, and vice
versa. This is analogous to the quantum mechanical uncertainty principle—the better the
frequency resolution achieved, the poorer the time resolution will be, and vice versa. The
optimal concentration of the signal’s energy in the joint time–frequency domain is achieved
when a real Gaussian function is used

g(t) =
(
σ 2

π

)1
4

exp

(
−σ 2t2

2

)
(20)

where σ defines the width of the window and the amplitude factor is chosen for energy
normalization to unity. The time duration �t and frequency bandwidth �ω of the Gaussian
function are defined by the standard deviations [10]:

�2
t =

∫
(t − 〈t〉)2 |g(t)|2 dt = 1

2σ 2
(21)

�2
ω =

∫
(ω − 〈ω〉)2 |G(ω)|2 dω = σ 2

2
(22)

where G(ω) = (
σ 2π

)1/4
exp

(−ω2/2σ 2
)

is the Fourier transform of g(t); mean time 〈t〉
and mean frequency 〈ω〉 are equal to zero. (In some of the literature, the time duration and
frequency bandwidth are defined as 2�t and 2�ω, respectively [11].) For the Gaussian window,
the uncertainty principle �t�ω � 1/2 becomes the equality �t�ω = 1/2, which indicates
the best resolution in the time–frequency plane.

Smaller σ values correspond to better resolution in the frequency domain, and greater
values to better resolution in the time domain. Consequently, the σ parameter can be used to
control the smoothness of the dynamical phase time dependence, acquired by integrating the
mean frequency of the STFT distribution. In other words, σ can be prescribed the meaning
of an intermediate frequency between free evolution and interaction. As a common case, free
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evolution differs from interaction by the greater field values, thus resulting in higher-frequency
oscillations, described by corresponding dipole Hamiltonians. Interaction only modifies free
evolution by introducing relatively lower frequencies. (An example may be a spin in a strong
magnetic field interacting with the rotating magnetic field of a plane wave. Here free evolution
means spin precession about a constant field axis, while the interaction produces nutation of
the precession axis with frequency much less than the precession frequency.)

Therefore, frequencies that are higher than σ are averaged out and the time–frequency
distribution P(t, ω) contains only lower frequencies of interaction. When evaluating
dynamical phase as an integral of the mean frequency of the P(t, ω) distribution, it looks as if
‘eigenbasis’P(t, ω) is governed by the interaction, a part of the total evolution of the interacting
system. This is just the same concept as follows from the geometric phase decomposition in
the noninteraction picture for the quantum case.

Generally, for real-world signals the meaning of free evolution and interaction of an
original system is not known a priori and σ becomes an independent variable. Since the
frequencies lying to the right of σ are smeared out in the time–frequency distribution, by
varying σ one may observe resulting effects on the dynamical phase evolution induced by the
rest of the lower frequencies. In this way, σ is closely related to the dynamics, which generates
the signal.

Now we shall prove that two limit values of σ , i.e. zero and infinity, correspond to the two
extreme cases of dynamical phase instantaneous frequency 〈ω〉t , namely, a constant ω0 and
total phase derivative ϕ′(t).

When σ → 0, STFT(t, ω) becomes time independent, which results in a constant
instantaneous frequency:

〈ω〉t =
∫
ω

∣∣STFT(t ′, ω)
∣∣ dω∫ |STFT(t ′, ω)| dω

= const ≡ ω0. (23)

To study the case σ → ∞, let us define a new signal s̃(t) = Ã(t)eiϕ̃(t) with the Fourier
transform

S̃TFT(t, ω) = |STFT(t, ω)|1/2 ei arg(STFT(t,ω)). (24)

For the case σ → ∞, it follows from the Dirac function representation δ(t) = σ√
π

e−σ 2t2
,

σ → ∞ that the window function approaches the delta function, g(t) → √
δ(t), and in the

limit

|STFT(t, ω)|2 = STFT∗(t, ω)STFT(t, ω)

= 1

2π

∫ ∫
s∗(τ1)s(τ2)

√
δ(τ1 − t)δ(τ2 − t)e−iω(τ2−τ1) dτ1 dτ2

= 1

2π

∫
|s(τ )|2 δ(τ − t) dτ = 1

2π
|s(t)|2 = 1

2π
A(t)2 (25)

and, equivalently,
∣∣S̃TFT(t, ω)

∣∣2 = 1

2π
Ã(t)2. (26)

From (24)–(26) it follows that in the limit σ → ∞∣∣S̃TFT(t, ω)
∣∣ = |STFT(t, ω)|1/2 = (2π)−1/4 A1/2(t) = (2π)−1/2 Ã(t) (27)

which means that it is possible to construct s̃(t) with the same phase as s(t), ϕ̃(t) = ϕ(t),
and amplitude Ã(t) = (2π)1/4 A1/2(t) satisfying relation (24) for σ → ∞. Since in the limit

σ → ∞,
∣∣S̃TFT(t, ω)

∣∣ as well as |STFT(t, ω)| do not depend on ω, averaging over frequency
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in the instantaneous frequency expression must be replaced by integration over the time axis,
in analogy to (9). Hence, the instantaneous frequency can be calculated in terms of the new
signal as

〈ω〉t =
∫
ω |STFT(t, ω)| dω∫ |STFT(t, ω)| dω

= 1

P̃ (t)

∫
S̃TFT

∗
(t, ω)ωS̃TFT(t, ω) dω

=
∫

η̃∗
t (τ )

1

i

d

dt
η̃t (τ ) dτ = 1

P̃ (t)

∫
Ã2(τ )

σ√
π

e−σ 2(τ−t)2
ϕ′(τ ) dτ

=
∫
Ã2(τ ) σ√

π
e−σ 2(τ−t)2

ϕ′(τ ) dτ∫
Ã2(τ ) σ√

π
e−σ 2(τ−t)2 dτ

→
σ→∞

∫
Ã2(τ )δ(τ − t)ϕ′(τ ) dτ∫
Ã2(τ )δ(τ − t) dτ

= ϕ′(t) (28)

where P̃ (t) is the time marginal of S̃TFT(t, ω):

P̃ (t) =
∫ ∣∣S̃TFT(t, ω)

∣∣2
dω =

∫
|s̃(τ )|2 |g(τ − t)|2 dτ =

∫
Ã2(τ )

σ√
π

e−σ 2(τ−t)2
dτ (29)

and η̃t (τ ) = P̃ (t)−1/2s̃(τ )g(τ − t) is a signal, normalized in the variable τ ,
∫ |η̃t (τ )|2

dτ = 1 [10]. Therefore, as expected, the STFT can cover the full range of dynamical phase
behaviour by adjusting the window width σ .

Next we shall show that geometric phase decomposition of a complex signal reduces to
the geometric phase decomposition for scalar waves [4], if it is applied to a harmonic time
series

s(t) =
∑
n

aneiωnt (30)

where an are real positive amplitudes and ωn are angular frequencies, respectively. In order to
obtain a linear time dependence of the dynamical phase, the window length must approach zero:
σ → 0. As pointed out in [4], for scalar wave superpositions, averaging over frequency in the
dynamical phase expression must be performed with respect to the amplitudes of the waves, not
intensities. Note that, for this reason, the amplitude of the STFT is chosen as a time–frequency
distribution in (18) instead of the usual power density. Inserting signal expansion (30) into the
expression of instantaneous frequency (23), and integrating the dynamical phase part of (14),
yields

α(t) =
∫ t

0

1

P(t ′)

∫
ωP(t ′, ω) dω dt ′ =

∫ t

0

∫
ω

∣∣STFT(t ′, ω)
∣∣ dω∫ ∣∣STFT(t ′, ω)

∣∣ dω
dt ′

=
∫ t

0

∫
ω

∣∣ 1√
2π

∫ ∑
n anei(ωn−ω)τ

(
σ 2

π

) 1
4

e− σ2

2 (τ−t ′)2
dτ

∣∣ dω

∫ ∣∣ 1√
2π

∫ ∑
n anei(ωn−ω)τ

(
σ 2

π

) 1
4

e− σ2
2 (τ−t ′)2

dτ
∣∣ dω

dt ′

→
σ→0

∫ t

0

∫
ω

∣∣ ∑
n anδ(ωn − ω)

∣∣ dω∫ ∣∣ ∑
n anδ(ωn − ω)

∣∣ dω
dt ′ =

∑
n anωnt∑
n an

. (31)

The geometric phase, as a difference between the total and dynamical phases, is

γ (t) = arg(s∗(0)s(t))− α(t) = arctan

( ∑
n an sinωnt∑
n an cosωnt

)
−

∑
n anωnt∑
n an

(32)

which is in accordance with the proposed decomposition in [4].
Hence, we have shown that the geometric phase for a complex signal is a generalization

of the geometric phase decompositions in the noninteraction picture and for scalar wave
superpositions.
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4. Computation of time–frequency distribution

The STFT, which we have used to obtain the time–frequency distribution for dynamical phase
averaging, has a dual transform—the inverse STFT [10, 11]:

s(t) = 1√
2πg∗(0)

∫
STFT(t, ω)eiωt dω. (33)

This comes in a pair for STFT for continuous time and frequency signals but cannot be used in
numerical analysis of sampled signals. Moreover, the inverse STFT (33) is a highly redundant
representation of a signal [11]. Indeed, even a continuous-time signal can be reconstructed
merely from the sampled version of the STFT [11]:

STFT [mT, k�] =
∫

s(t)g∗(t −mT )e−ik�t dt =
∫

s(t)g∗
mk(t) dt (34)

s(t) =
∞∑

m=−∞

∞∑
k=−∞

STFT [mT, k�]h(t −mT )eik�t =
∞∑

m=−∞

∞∑
k=−∞

STFT [mT, k�]hmk(t)

(35)

where T and � denote the time and frequency sampling steps, respectively, and gmk(t) and
hmk(t) are time-shifted and frequency-modulated dual functions

gmk(t) = g(t −mT )eik�t (36)

hmk(t) = h(t −mT )eik�t (37)

which have to satisfy two bi-orthonormality conditions:
∞∑

m=−∞

∞∑
k=−∞

g∗
mk(t)hmk(t

′) = δ(t − t ′) (38)

∫
g∗
mk(t)hnl(t) dt = δ [m− n] δ [k − l] (39)

where δ(t) and δ [m] are the continuous and discrete Dirac functions and square brackets
throughout denote functions of discrete variables.

Sampled versions of the STFT and inverse STFT are known as the Gabor transform and
Gabor expansion, respectively, after Dennis Gabor, who first invented two-dimensional signal
representation by elementary functions localized both in time and frequency [13]:

s(t) =
∞∑

m=−∞

∞∑
k=−∞

Amkhmk(t) (40)

where Amk = STFT [mT, k�] are called Gabor coefficients. The necessary condition for
existence of the Gabor expansion is that the sampling steps T and � must be small enough to
satisfy

T� � 2π. (41)

The case when T� = 2π is called critical sampling and that when T� < 2π oversampling.
Only for the critical sampling are Gabor elementary functions {hmk(t)} linearly independent and
dual functions {gmk(t)} unique and bi-orthogonal to {hmk(t)}. In order that Gabor coefficients
could represent the signal’s behaviour in the joint time–frequency domain, dual functions
{gmk(t)}, which play the role of windowing functions in (34), must be concentrated in both the
time and frequency domains. The optimal choice is the one whose shape is closest to {hmk(t)},
the Gaussian functions, in the sense of the least-squares error,

�mk = min−∞<t<∞ |gmk(t)− hmk(t)|2 . (42)
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As the oversampling rate increases, the error �mk becomes smaller, and in the limit gmk(t) =
const · hmk(t), for which case (34), (35) are called the orthogonal-like Gabor transform.

To obtain the discrete version of the Gabor transform, suitable for analysis of discrete
signals, both time and frequency axes need to be sampled. Remember that sampling of one
domain leads to periodicity in the adjacent domain. After sampling a signal s(t) in the time
and frequency domains by substitutions

t → n T → N � → 2π/K (43)

with n being a discrete variable and N and K being integer numbers, Gabor coefficients Amk

become periodic in both m and k variables with integer periods M and K , respectively, where
M satisfies the condition [14]

MN � Ns + Ng − 1 (44)

with Ns and Ng being the finite supports of a signal and window function, respectively. After
this we obtain a pair of discrete Gabor expansion-transforms [14]:

s [n] =
∑

m=〈M〉

∑
k=〈K〉

Amkh [n−mN ] ei2πnk/K (45)

Amk =
∑

n=〈MN〉
s [n] g∗ [n−mN ] e−i2πnk/K (46)

where the expression m = 〈M〉 throughout denotes a finite interval of M successive integers
m. Now the condition (41) for sampling steps becomes

N/K � 1 (47)

and the degree of oversampling is expressed as K/N = p/q � 1, where p and q are two
integers (p � q � 1) that do not have common factors.

The discrete Gabor transform can be calculated using computer algorithms based on
the fast Fourier transform. One such algorithm, which we have used in numerical analysis, is
presented in [14]. In order to determine Gabor coefficients, it uses discrete Fourier and discrete
Zak transforms, for which fast Fourier transforms can be applied.

5. Numerical results

The proposed method is verified by a number of geometric phase decompositions reported
earlier in the literature [9,15–20]. These cases represent exact decompositions using theoretical
models of SU(2) evolutions except for [15], based on experimental observations.

Many other experimental results of geometric phase observations cannot be analysed by
the STFT method because they are available only for closed paths in the parametric space.
Experimentally, the geometric phase is obtained from the total phase in polarimetric [18] or
interferometric [21] measurements, when system parameters are controlled in such a way as
to suppress the dynamical phase part. Although various experiments have been conducted,
including cyclic [8] as well as noncyclic [15] state evolutions, most of them are aimed at
measuring the phase shift after the system undergoes some finite-length evolution in time or
space. This means that the measured quantity represents a complete geometric phase but not
the phase evolution itself, the intermediate points, required to justify numerical results of the
method. There are experiments on geometric phase reporting quantum beats of intensity versus
time [22–24]. However, these are also concerned with a static (or quasi-static [24]) phase shift
introduced by particular evolution, and the beats of intensity are useful only for determination
of the phase shift.
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Numerical simulations are applied to a complex signal s(t) reconstructed from the scalar
vector product of the state vector |
(t)〉 and initial state |m(t)〉, which, in general, can be time
dependent:

s(t) = 〈m(t)| 
(t)〉 = |〈m(t)| 
(t)〉| eiβ(t) (48)

where β(t) is the total phase. The geometric phase of the complex signal estimated by the
time–frequency analysis is compared with that calculated theoretically in the corresponding
original papers. The particular values of the system parameters in the following examples are
chosen according to the original works.

5.1. Spin 1
2 in a static magnetic field

Interferometric amplitudes and phases of the polarized neutrons in a constant magnetic field
have been measured and verified by theoretical results in [15]. Spin- 1

2 particles with spins
initially subtending an angle θ with a static magnetic field undergo a precession with an angleφL

as determined by the SU(2) transformation exp(−iσzφL/2), where σz is the third Pauli matrix.
Interference between initial and final states results in a complex signal s(φL) = A(φL)eiβ(φL)

with amplitude and phase [15]

A(φL) =
√

1 − sin2 θ sin2 φL

2
(49)

β(φL) = − arctan

(
cos θ tan

φL

2

)
. (50)

The corresponding geometric phase for noncyclic evolutions is given by

γ (φL) = − arctan

(
cos θ tan

φL

2

)
+
φL

2
cos θ. (51)

Numerically the geometric phase is estimated by applying the STFT with oversampling
K/N = 128 to the 512-point sampled complex signal. The width of the Gaussian window (20)
is chosen as σ = 0.75 · 2π/T with respect to the period of precession T = 360◦. For such a
window width, the dynamical phase linearly depends on φL and the estimated geometric phase
closely matches the theoretical dependence as shown in figure 1. However, in order to achieve
the desired resemblance, not only does the window width have to be adjusted, but also the
minimum STFT spectrum level must be set. This is because even the small variations of the
spectrum due to sampling effects produce significant errors in averaging over frequency in the
dynamical phase expression (14). In this case, only spectral components greater than 10−3 of
the maximum value are taken into account.

5.2. Spin 1
2 in a rotating magnetic field

For a spin- 1
2 particle subjected to an external magnetic field B(t) = (B1 cosωt, B1 sinωt, B0)

rotating with Larmor frequencyω = ω0 = g′B0 (g′ is the gyromagnetic ratio) the scalar vector
product for the initial state m = 1/2 is expressed as [9]

s(t) = 〈m(t)| 
(t)〉 =
〈

1

2

∣∣∣∣U+
1 (t)U(t)

∣∣∣∣1

2

〉
= cos

ω0t

2
− i cosω1t sin

ω0t

2
(52)

which represents a complex signal by itself (here ω1 = g′B1). In figure 2, the numerically
obtained geometric phase is compared with the theoretical dependence [9]

γ (t) = − arctan

[
cosω1t tan

ω0t

2

]
+
ω0

2

sinω1t

ω1
(53)
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Figure 1. Geometric phase decomposition for a spin 1
2 in a static magnetic field for different angles

of incident spin orientation θ : 90.01◦ (a) and 109.5◦ (b). Top of each plot, real (solid curve) and
imaginary (dashed curve) parts of the complex signal. Bottom of each plot, true (solid curve) and
estimated (dashed curve) geometric phases. STFT parameters: window width σ = 0.75 · 2π/T ,
T = 360◦, oversampling K/N = 128 and minimum spectral level 10−3.
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Figure 2. Geometric phase decomposition for a spin 1
2 in a rotating magnetic field for a cyclic state

with period T = 2π/ω1 and ω0T = 48π . Top, real (solid curve) and imaginary (dashed curve)
parts of the complex signal. Bottom, true (solid curve) and estimated (dashed curve) geometric
phases. STFT parameters: window width σ = 1.324ω1 = 0.055ω0, oversampling K/N = 128
and minimum spectral level 0.2.

for a cyclic state with period T = 2π/ω1 and ω0T = 48π . The complex signal is sampled
by 512 points and then STFT with oversampling K/N = 128 and minimum spectrum
level 0.2 is applied. The parameter σ of the window, or frequency bandwidth, is set to
σ = 1.324ω1 = 0.055ω0, i.e. ω1 < σ < ω0. This means that STFT with such a window filters
out the high-frequency ω0 component and leaves only ω1 oscillations in the dynamical phase.
As is evident from figure 2, there is quite good agreement between the true and estimated
geometric phases.
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Figure 3. Estimated geometric phase of a spin 1
2 in a rotating magnetic field for the same evolution

as in figure 2, but different widths of STFT window: σ = 225ω1 = 9.375ω0 (solid curve),
σ = 1.324ω1 = 0.055ω0 (dashed curve) and σ = 0.225ω1 = 0.9375 × 10−3ω0 (dotted curve).

Varying the STFT window width, two extreme cases of geometric phase dependence can
be achieved. Narrowing the window, when σ = 225ω1 = 9.375ω0 and ω1 < ω0 < σ , the
dynamical phase approaches the total phase and the geometric phase vanishes. For a wide
window with σ = 0.225ω1 = 0.9375 × 10−3ω0 when σ < ω1 < ω0, the dynamical phase
becomes constant and equal to zero. In this case, the geometric phase coincides with the total
phase. This situation is illustrated in figure 3 and represents different choices between free
evolution and interaction of a corresponding system as discussed in section 2.

A rotating magnetic field with B1 	 B0 is usually encountered in magnetic resonance
experiments such as [7]. Yet another configuration of rotating magnetic field is used in
neutron polarimetry [18]. Consider polarized-spin neutrons [16–18] subjected to a magnetic
field of constant amplitude B1 rotating with the angular frequency ω in the xy plane:
B(t) = (B1 cosωt, B1 sinωt, 0). For neutrons with spin oriented along the stationary effective
field Br = (B1, 0,−ω/g′) [16, 17], subtending an angle θ with the z axis, the scalar vector
product of the initial |
(0)〉 and final |
(t)〉 states is

s(t) = 〈
(0)| 
(t)〉 = e−i ωr t
2

(
cos

ωt

2
− i cos θ sin

ωt

2

)
(54)

where ωr = g′|Br|, and the geometric phase at time t becomes [16, 18]

γ (t) = − arctan

[
cos θ tan

ωt

2

]
+
ωt

2
cos θ. (55)

The estimated geometric phase for effective field angle θ = 105◦ is obtained from a 512-
point sampled signal and compared with the true dependence in figure 4. For a chosen set of
STFT parameter values, the approximation closely follows the true geometric phase.

5.3. Polarization rotation

Consider a plane wave subjected to polarization rotation in an optically active medium, or
Faraday effect. For a linearly polarized wave consisting of two circularly polarized components
e+, e−, with ellipticity parameter Z = |e+|2 − |e−|2, the scalar vector product of the initial
e(0) and final e(z) polarization vectors is expressed as [19]

s(z) = e∗(0)e(z) = eiκz (cos δz + iZ sin δz) (56)
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Figure 4. Geometric phase decomposition for a spin 1
2 in a rotating magnetic field with spin

oriented along the effective field making an angle θ = 105◦ with the z axis. Top, real (solid curve)
and imaginary (dashed curve) parts of the complex signal. Bottom, true (solid curve) and estimated
(dashed curve) geometric phases. STFT parameters: window width σ = 0.90 · 2π/T , T = 360◦,
oversampling K/N = 128 and minimum spectral level 0.05.

where κ = (k+ + k−) /2 is the average wavenumber and δ = (k+ − k−) /2 is the difference
between the wavenumbers k± of two circularly polarized components propagating along the z
direction. The geometric phase evaluated analytically [19]

γ (z) = arctan (Z tan δz)− Zδz (57)

together with the complex signal (56) are shown in figure 5 for parameter values Z = 0.05
and δ = 0.2κ . Here is also shown the geometric phase estimated from the 256-point sampled
complex signal. For a chosen STFT window bandwidth σ = 0.75δ = 0.15κ when σ < δ < κ ,
oversampling K/N = 64 and minimum spectral level 10−2, the dynamical phase is averaged
down to linear dependence and the resulting geometric phase shows good agreement with
theoretical results.

5.4. Birefringence

Another type of polarization transformation is birefringence—change of polarization ellipticity
when a plane wave propagates through materials in which the index of refraction depends on
the alignment of the linear polarization. When a plane wave linearly polarized along the x axis
passes through a birefringent plate with retardation δ, its fast axis making an angle β with the
x axis, the scalar product of the polarization vectors can be written as [20]

s(β) = e∗(0)e(β) = a(β)eiφ(β) (58)

where amplitude a(β) and phase φ(β) are determined by the following equations:

a(β) cos [φ(β)] = cos2 β + sin2 β cos δ (59)

a(β) sin [φ(β)] = sin2 β sin δ. (60)

The geometric phase is expressed as the difference between the total φ(β) and dynamical
φd(β) phases [20]:

γ (β) = φ(β)− φd(β) (61)
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Figure 5. Geometric phase decomposition for polarization rotation with ellipticity parameter
Z = 0.05 and coefficient of anisotropy δ/κ = 0.2. Top, real (solid curve) and imaginary
(dashed curve) parts of the complex signal. Bottom, true (solid curve) and estimated (dashed
curve) geometric phases. STFT parameters: window width σ = 0.75δ = 0.15κ , oversampling
K/N = 64 and minimum spectral level 10−2.

where

φd(β) = δ sin2 β. (62)

This case is rather different from the previous examples in that it considers the geometric phase
dependence on the chosen parameter—rotation angle β of the birefringent plate, but not the
temporal or spatial evolution. This results in a badly defined complex signal (58), which for
some values of δ near 180◦ becomes a real sinusoidal signal. Such a signal has only linear phase
dependence on the parameter β and there is no way to define the geometric phase. Therefore,
instead of (58), the signal reconstructed only from the phase φ(β)

s(β) = eiφ(β) (63)

is chosen. Although its imaginary part also vanishes for the same values of δ, it is no longer a
sinusoidal signal with trivial phase dependence. The real part now includes a part of the phase
information of the original signal. Real and imaginary parts of the signal for several values of
parameter δ are shown in figure 6. For some values of δ, the signal has steep edges, therefore
it is sampled by a relatively large number—1024—of samples. True and estimated geometric
phases are also shown in figure 6. The window bandwidth σ = 2.5 · 2π/T is chosen with
respect to period T = 360◦ of the rotation angle and is the same for all cases of δ. Different
values of δ correspond to different contours in the parametric space—the Poincaré sphere.
Geometric phase jumps ±π near δ = 180◦ coincide with the great circles on the Poincaré
sphere. Signals in parts (c) and (d) of figure 6 differ by the sign of the imaginary part, which
is small in absolute value, but inverts the sign of the total phase. Although there is no perfect
agreement between theoretical and numerical results, the estimated geometric phase clearly
exhibits its characteristic features—nonlinearity and phase jumps.

6. Conclusions

The proposed method for geometric phase estimation from the scalar vector product of the
final and initial states employs the time–frequency distribution of the corresponding complex
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Figure 6. Geometric phase decomposition for polarization birefringence for various values of
retardation: 89.99◦ (a), 135◦ (b), 179.99◦ (c) and 180.01◦ (d). Top of each plot, real (solid curve)
and imaginary (dashed curve) parts of the complex signal. Bottom of each plot, true (solid curve)
and estimated (dashed curve) geometric phases. STFT parameters: window width σ = 2.5 ·2π/T ,
T = 360◦, oversampling K/N = 256 and minimum spectral level 10−2.

signal. The resulting geometric phase depends on the STFT window width. As shown in the
above examples, by proper adjustment of the window width, a suitable agreement between
true and estimated geometric phases can be achieved. This produces satisfactory results even
for badly defined signals, reconstructed from the phase alone. The window width is not known
in advance and has to be determined on the basis of theoretical results, but once determined
for a given system it can be used for all cases of the system’s evolution.

Another drawback of the method is that it is prone to sampling errors. Averaging over
frequency with respect to the numerically obtained time–frequency distribution is significantly
biased by the small values of the distribution. Therefore, for real-world signals, the spectrum
must be bounded by a minimum level for which integration is performed.

Nevertheless, the method represents an alternative for theoretical decomposition of
geometric phase and in this perspective may be used for experimental evaluation of the
geometric phase. The results may be important especially because to date there is no purely
experimental way to determine the geometric phase without detailed knowledge of the system’s
evolution model.
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